Testing of Hypothesis
 Hypothesis:
A statistical hypothesis is an assumption that we make about a population parameter, which may or may not be true concerning one or more variables.

According to Prof. Morris Hamburg “A hypothesis in statistics is simply a quantitative statement about a population”.
Hypothesis testing:


Hypothesis testing is to test some hypothesis about parent population from which the sample is drawn.
Example: 


A coin may be tossed 200 times and we may get heads 80 times and tails 120 times, we may now be interested in testing the hypothesis that the coin is unbiased.

To take another example we may study the average weight of the 100 students of a particular college and may get the result as 110lb. We may now be interested in testing the hypothesis that the sample has been drawn from a population with average weight 115lb.


Hypotheses are two types

1. Null Hypothesis

2. Alternative hypothesis

Null hypothesis:

The hypothesis under verification is known as null hypothesis and is denoted by H0 and is always set up for possible rejection under the assumption that it is true.

For example, if we want to find out whether extra coaching has benefited the students or not, we shall set up a null hypothesis that “extra coaching has not benefited the students”. Similarly, if we want to find out whether a particular drug is effective in curing malaria we will take the null hypothesis that “the drug is not effective in curing malaria”.
Alternative hypothesis:


The rival hypothesis or hypothesis which is likely to be accepted in the event of rejection of the null hypothesis H0 is called alternative hypothesis and is denoted by H1 or Ha.


For example, if a psychologist who wishes to test whether or not a certain class of people have a mean I.Q. 100, then the following null and alternative hypothesis can be established.



The null hypothesis would be
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Then the alternative hypothesis could be any one of the statements.
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Errors in testing of hypothesis:


After applying a test, a decision is taken about the acceptance or rejection of null hypothesis against an alternative hypothesis.  The decisions may be four types.
1) The hypothesis is true but our test rejects it.(type-I error)

2) The hypothesis is false but our test accepts it. .(type-II error)
3) The hypothesis is true and our test accepts it.(correct)
4) The hypothesis is false and our test rejects it.(correct)
The first two decisions are called errors in testing of hypothesis.




i.e.1) Type-I error




    2) Type-II error

1) Type-I error: The type-I error is said to be committed if the null hypothesis (H0) is true but our test rejects it.

2) Type-II error: The type-II error is said to be committed if the null hypothesis (H0) is false but our test accepts it.

Level of significance:

 The maximum probability of committing type-I error is called level of significance and is denoted by
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= P (Committing Type-I error)

    



    = P (H0 is rejected when it is true)

This can be measured in terms of percentage i.e. 5%, 1%, 10% etc…….
Power of the test:

The probability of rejecting a false hypothesis is called power of the test and is denoted by
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· A test for which both 
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 and 
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 are small and kept at minimum level is considered desirable.

· The only way to reduce both 
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 and 
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 simultaneously is by increasing sample size.

· The type-II error is more dangerous than type-I error.
Critical region:
A statistic is used to test the hypothesis H0. The test statistic follows a known distribution. In a test, the area under the probability density curve is divided into two regions i.e. the region of acceptance and the region of rejection. The region of rejection is the region in which H0 is rejected. It indicates that if the value of test statistic lies in this region, H0 will be rejected. This region is called critical region. The area of the critical region is equal to the level of significance
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. The critical region is always on the tail of the distribution curve. It may be on both sides or on one side depending upon the alternative hypothesis.
One tailed and two tailed tests:
A test with the null hypothesis 
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against the alternative hypothesis
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, it is called a two tailed test. In this case the critical region is located on both the tails of the distribution.
A test with the null hypothesis 
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against the alternative hypothesis 
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(right tailed alternative) or 
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(left tailed alternative) is called one tailed test. In this case the critical region is located on one tail of the distribution.
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------- left tailed test

Sampling distribution:

Suppose we have a population of size ‘N’ and we are interested to draw a sample of size ‘n’ from the population. In different time if we draw the sample of size n, we get different samples of different observations i.e. we can get 
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possible samples. If we calculate some particular statistic from each of the 
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samples, the distribution of sample statistic is called sampling distribution of the statistic. For example if we consider the mean as the statistic, then the distribution of all possible means of the samples is a distribution of the sample mean and it is called sampling distribution of the mean.

Standard error:

Standard deviation of the sampling distribution of the statistic t is called standard error of t.






i.e.
S.E (t)=
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Utility of standard error:

1. It is a useful instrument in the testing of hypothesis. If we are testing a hypothesis at 5% l.o.s and if the test statistic i.e. 
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then the null hypothesis is rejected at 5% l.o.s otherwise it is accepted. 
2. With the help of the S.E we can determine the limits with in which the parameter value expected to lie.
3. S.E provides an idea about the precision of the sample. If S.E increases the precision decreases and vice-versa. The reciprocal of the S.E i.e. 
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4. It is used to determine the size of the sample.

Test statistic:

The test statistic is defined as the difference between the sample statistic value and the hypothetical value, divided by the standard error of the statistic.





i.e. test statistic 
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Procedure for testing of hypothesis:

1. Set up a null hypothesis i.e. 
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2. Set up a alternative hypothesis i.e. 
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3. Choose the level of significance i.e. 
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4. Select appropriate test statistic Z.
5. Select a random sample and compute the test statistic.

6. Calculate the tabulated value of Z at 
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% l.o.s i.e. 
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7. Compare the test statistic value with the tabulated value at 
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% l.o.s. and make a decision whether to accept or to reject the null hypothesis.

Large sample tests:

The sample size which is greater than or equal to 30 is called as large sample and the test depending on large sample is called large sample test.

The assumption made while dealing with the problems relating to large samples are 

Assumption-1: The random sampling distribution of the statistic is approximately normal.

Assumption-2: Values given by the sample are sufficiently closed to the population value and can be used on its place for calculating the standard error of the statistic.
Large sample test for single mean (or) test for significance of single mean:

For this test 

                     The null hypothesis is 
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against the two sided alternative 
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where 
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 be a random sample from a normal population with mean 
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Now the test statistic 
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Now calculate 
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Find out the tabulated value of Z at 
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If 
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Note: if the population standard deviation is unknown then we can use its estimate s, which will be calculated from the sample. 
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Large sample test for difference between two means:
If two random samples of size 
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For this test 

                     The null hypothesis is 
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against the two sided alternative 
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Now the test statistic 
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Now calculate 
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Find out the tabulated value of Z at 
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Large sample test for single standard deviation (or) test for significance of standard deviation:

Let 
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 be a random sample of size n drawn from a normal population with mean 
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For this test 

                     The null hypothesis is 
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against the two sided alternative 
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Now the test statistic 
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Now calculate 
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Find out the tabulated value of Z at 
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Large sample test for difference between two standard deviations:
If two random samples of size 
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For this test 

                     The null hypothesis is 
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against the two sided alternative 
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Now the test statistic 
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Now calculate 
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Find out the tabulated value of Z at 
[image: image147.wmf]a

% l.o.s i.e. 
[image: image148.wmf]a

Z


If 
[image: image149.wmf]Z

>
[image: image150.wmf]a

Z

, reject the null hypothesis H0
If 
[image: image151.wmf]Z

<
[image: image152.wmf]a

Z

, accept the null hypothesis H0
Large sample test for single proportion (or) test for significance of proportion:

Let x is number of success in n independent trails with constant probability p, then x follows a binomial distribution with mean np and variance npq.

In a sample of size n let x be the number of persons processing a given attribute then the sample proportion is given by 
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For this test 

                     The null hypothesis is 
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against the two sided alternative 
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Now the test statistic 
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Find out the tabulated value of Z at 
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Large sample test for single proportion (or) test for significance of proportion:

let 
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